
1. What is an injector?

// Register

const = Injector.create([

 { provide: , useValue: }

]);

.get();

injector

injector

“color” “blue”

“color”
// Retrieve

// returns “blue”

An injector is basically a key/value map. Here is a code example
showing how an injector is created and used under the hood:

@Component

 myService

({ ... })

 {

)

}

export class
 private = inject(

MyComponent
MyService

... or via the inject() function.

@Component

 myService:

({ ... })

 {

 ()

}

export class
constructor private

MyComponent
MyService

Either via constructor (most common way) ...

Inject into a Component

@Injectable({

 providedIn:
})

 {}

“root”

export class MyService

Register
Creates a tree-shakable, singleton service in the root injector.

2. Recommended way
This is what you need to know to get started with Angular DI. How
to register a service and then how to inject it into a component.
This is the most basic and most common use case.

// Modifiers can be combined

 MyComponent {

 ()

)

}

export class
constructor

= inject(, {

}

@Self() @Optional()

self: true,

 optional: true

 myService: MyService
myService MyService

// Usage

 MyComponent {

 // Via constructor

()

 // Via inject fn

)

}

export class

 constructor

 = inject(

@Host()

{host:true}

myService: MyService

myService MyService,

Resolution Modifiers
Often used with @Directives, especially @SkipSelf(), @Self() and @Host(). A good example is the ngModel directive.

App Component

Parent Component

MyComponent

Skips itself and starts
with the parent
component injector

@SkipSelf()

App Component

Parent Component

MyComponent

Lets you designate a
component as the last
stop in the injector
tree when searching
for providers.

Even if there is a
service instance
further up the tree,
Angular won't
continue looking

@Host()

null

Returns null instead of
throwing an error if no
provider is found.

@Optional()

@Optional()

decorator set?

return null

throw exception

yes

no

provider

not found

App Component

Parent Component

MyComponent

Only looks on the
current component
injector

@Self()

@Component({

 providers: [],

 viewProviders: [],

})

 {}

MyService
MyService

MyComponentexport class

@Directive({

 providers: [],

})

 {}

MyService

MyDirectiveexport class

Component / Directive Providers

Providers makes the service available to its
component, all child components including
projected components through ng-content.

ViewProviders limits the provider to its
component and child components. All child
components within ng-content don’t see the
provider. This can be used to make a service
“private” since it’s not exposed to its “content
children”.

Use this to create a singleton service for a component and its child components. Can
also be used for directives.

NgModule providers are usually registered in the root
injector. Only exception are LazyModules. In this case the
providers are registered in the lazy module injector and is
not available to components outside of the lazy module.

Use providedIn: “any” to provide a service for a
LazyModule instead of using the NgModule provider.

NgModule providers should be avoided since they are not tree-shakable.

@NgModule({

 ... 
 providers: []

})

 MyModule {}

MyService

export class

NgModule Providers

const new = InjectionToken<string>(“BaseUrl”, {

 providedIn: | | |
 factory: => “localhost:4200”

});

BaseURL
“any” ”platform” ModuleB
“root”

()

 Tree-shakable Injection Tokens
Use them to create tree-shakable tokens for non class types like strings. Read more about
InjectionTokens in the “Provider Syntax” section.

@Injectable({

 providedIn: | | |
 useFactory: () => new MyService() 
})

 {}

“root” “any” ”platform” ModuleB

MyServiceexport class

 Tree-shakable Services with a Factory
Add a factory to customize how the service is created.

4. Other ways to register
There are some other ways how to register a service. The most common one is the provider array in
NgModule which can be mostly replaced by tree-shakable alternatives. Find the to read more about
tree-shaking.

providers: []MyService providers: [{ provide: , useClass: , multi: false }] MyService MyService

const new = InjectionToken< >();

[{ provide: BaseUrl, ... }]

BaseUrl string “Base_Url”

Injection Token

Use InjectionTokens for simple values like dates, numbers and strings, or
shapeless objects like arrays and functions.

[

 { provide: , useValue: , multi: },

 { provide: , useValue: , multi: }

]

)) {

.log(colors);

}

"colors" "white"
"colors" "black"

“colors”
"white" "black"

true
true

@Inject(colors: string[]
 console
constructor(

// Logs: [,]

multi: true

Used to register multiple services or values with one token. Returns an array
with all services or values. Without the multi: true, the last provider would just
override the existing one. In this example “colors” would return “black”.

Instead of a class token,  
we could also use:

[{ ..., useValue: }]“http://localhost”

[{

 ...,

 useFactory: (port: Port) =>

deps: [Port]
}]

`http://localhost:${port}`,

 // Define deps here if needed

// UseExisting is like an alias to an existing service.

[{ ..., useExisting: ExistingService }]

Instead of useClass,

we could also use:

Providers Syntax

is a shorthand for

constructor private()@Inject() baseUrl: stringBaseURL

Use @Inject to retrieve the Injection Token

Module Injector Tree

App Component

Other Component Parent Component

Sibling Component MyComponent

Node Injector Tree (Element Injector before Ivy)

Every component has its own injector.

null

platform

root

lazy module A lazy module B

The platform module injector is
shared across all angular applications
running within the same window.

Every application has one root injector.
Most services are registered here.

3. Hierarchical injectors (under the hood)
This is how the injector tree looks under the hood. It’s a hierachical tree of injectors.

 Every injector has a parent (except for the null injector).

 Actually is not one but two trees. The node injector and the module injector tree.

 The resolution always starts with the current components node injector.

 Every component has its own node injector.

 In a common application, all services are registered in the root injector.

If the component injector can not
resolve the token, Angular travels
up its parents nodes.

2

4
The null injector throws an error if no
provider is found or returns null if the

 decorator was used.@Optional

3
After travelling up the node injector
tree without finding a provider, Angular
continues with the module injector tree

root

 platform

root ModuleB any

ModuleB any

default

if defined in a
LazyModule

MyService class is used as a token.

Like calling Injector.get(MyService)

directly.

Resolution

MyService

Chris Kohler
christiankohler.net Subscribe: @kohlerchristian Version 1.15 © 2023 Chris Kohler

Dependency Injection

Angular 2023

Edition

including
the new

Angular 15
Features

1
The resolution starts from the
injector of the current component.

What is Tree-shaking? 
Tree-shaking eliminates dead code by removing unused code. Angular removes
tree-shakable providers from the final bundle when the application doesn’t use those
services. This can reduce the bundle size. This is not possible with NgModule providers
since there is no way for the bundler to know whether the service is used or not.

