
@Component({

 ...

 changeDetection: ChangeDetectionStrategy.
})

 ItemComponent {}

OnPush

export class

Chris Kohler
christiankohler.net @kohlerchristian Version 1.0 © 2021 Chris Kohler

Cart

Apple 1pc

pc1

2 $

3 $

5 $

Banana

Total

const

get

return this

 state = {

 items: [

 { id: , title: “Apple”, qty: , cost: },

 { id: , title: “Banana”, qty: , cost: },

],

 total() { 

 calcTotal(.items); 
 }

}

0 1 2
1 1 3

// implementation of calcTotal is not relevant

The state is part of the app component and then
forwarded via @Inputs to its child components.

We use the example of a shopping cart to visualize how Angular applies changes to its views.
The example shows what happens when the button is clicked.

Example App

Item Banana

OnPush

Default

ItemsTotal

OnPush

Default

App

items

item item

total

Item Apple

OnPush

CD

DetectChanges

CD

CD

CD

CD Refreshed because it was set to dirty after the click

Refreshed because it’s set to default change detection

Refreshed because input (total) changed

Refreshed because it is the root component

Not refreshed, Inputs didn’t change

Detect Changes
Traverses down the tree and runs
the change detection logic on
every component

Traverse
down

tick

Tick()

A tick triggers the process of change
detection and its side-effects.

What triggers a tick?

Normally when ngZone is
stabilised

markDirty() calls scheduleTick
(which coalesce multiple tick
requests)

Set Dirty

Set Dirty

Set Dirty

“Set Dirty” Phase
To make sure the affected
components are updated on a
refresh, the component and all its
ancestors are marked dirty.

Without this process it could happen that the
view is not updated if it is set to “OnPush” and
the inputs didn’t change.

Bubble
up

What triggers “SetDirty”?

Events like “click”

Async pipe when observable
emits new value
Trigger manually with
markForCheck()

Change
An application change usually
happens within a view.

The button within the “Item
Banana” view was pressed. This
changes the qty of bananas in the
state.

Set Dirty

A view is either refreshed when
the component is dirty or set to
CheckAlways

Is
CheckAlways

or Dirty ? Refresh ViewYes

Bubble
up

“Set Dirty” Phase
 

Bubble up from the view where the
event was triggered and set the
view and all its ancestors to dirty

Traverse
down

Change detection Phase
 

Traverse down from the root view
and run change detection on the
views.

Set Dirty

A view is set to dirty if an input
changed, an event was emited
from a view or its ancestors or it
was set manually to dirty

Yes@Input()
changed

Event
triggered in
component

or its
ancestors

Manually
set to dirty

The importance of

The two main phases of change detection

Behind the scenes of change detection
What happens when the user clicks a button?

All Views are refreshed
on every tick. That way
we are sure that no view
is “out of sync” with the
state.

 Inputs changed

 Event was emitted from within the view

 Manually set to markFor Check

Views are refreshed
when the view is dirty. because

VS.

@Component({

 ...

 changeDetection: ChangeDetectionStrategy.
})

 ItemComponent {}

Default

export class

Can be slow since the full app
is updated on every change

Simple

Default (aka CheckAlways)

Item Banana

OnPush

Item Apple

OnPush

App

Default

Items

Default

Total

OnPush

Event

State updated

Change Detection

triggers refresh

Requires a good
understanding of how it
works

Can improve performance

OnPush

<person [person]="person"></person> //
// Reference changed

Working

person = { age: }
50

//
// Reference unchanged

Not working

person.age = 50

@Component

@Input

({

 selector: ,

 template: ,

 changeDetection: ChangeDetectionStrategy.
})

 PersonComponent {

 () person;

}

"person"
"{{ person.age }}"

OnPush

export class

Shallow comparison

Inputs are compared by reference or primitive type. This means if an input is bound to an
object and only a property of the object changes, no input change is detected.

How does Angular refresh the views?
What happens after Angular detects a change? Angular needs to refresh all the
affected views. There are two strategies we can choose from. Default and OnPush.

Zone.js patches most standard web APIs 
(such as DOM events, XMLHttpRequest, ...)

Patching native eventsabort animationcancel animationend animationiteration auxclick
beforeinput blur cancel canplay canplaythrough change compositionstart
compositionupdate compositionend cuechange click close contextmenu
curechange dblclick drag dragend dragenter dragexit dragleave dragover
drop durationchange emptied ended error focus focusin focusout
gotpointercapture input invalid keydown keypress keyup load loadstart
loadeddata loadedmetadata lostpointercapture mousedown mouseenter
mouseleave mousemove mouseout mouseover mouseup mousewheel
orientationchange pause play playing pointercancel pointerdown
pointerenter pointerleave pointerlockchange mozpointerlockchange
webkitpointerlockerchange pointerlockerror mozpointerlockerror
webkitpointerlockerror pointermove pointout pointerover pointerup
progress ratechange reset resize scroll seeked seeking select
selectionchange selectstart show sort stalled submit suspend timeupdate
volumechange touchcancel touchmove touchstart touchend transitioncancel
transitionend waiting wheel

+ 250 events patched

Every time one of those patched event is
triggered, zone.js triggers change detection

Trigger change detection

drag

click

Zone

...

detectChanges()

Notifies when there is no more
microtasks enqueued in the current
VM Turn. This is a hint for Angular to
do change detection.

onMicrotaskEmpty

How is Angular detecting change?
What is the magic behing Angular
change detection?

We’re

CLOSED

We’re

OPEN

We’re

CLOSED

OPEN

Initial
Rendering

Update

Rendering

Initial StateTemplate Rendered View

Updated ViewState Changed Change detected

View needs to
be updated

Event triggered
For example by

a click event
Triggers a

view refresh

What is Change Detection?
It detects changes in the
state and triggers a refresh

Change detection
Angular Ivy

Edition

Run ngDocheck()

Check Inputs

Is CheckAlways

or Dirty?

manually set to dirty

Set Dirty

Set Dirty Call ngOnChanges()

Warning: ngOnChanges != “View gets refreshed” 

Don’t mistake ngOnChanges for a callback which is
called when a view is refreshed.

ngOnChanges is only called when an @Input changed.

It is not called when the view is refreshed for other
reasons. So it could be a false positive.

Refresh View

Changed

No action

Yes

No Changes

After the previous steps, some views are already set to dirty during the “Set dirty” phase.

For example or its parent Item Banana

OnPush Default

Items

If the view isn’t dirty or CheckAlways, it can still be set to dirty if the inputs changed or they are manually set to dirty in ngDoCheck()

If an @Input has changed, the view is set
to dirty and ngOnChanges() is called.

export class implements
constructor private

if
this

 AppComponent DoCheck {

 () {}

 ngDoCheck() {

 (myCustomCheck) {

 .cdRef.markForCheck();

 }

 }

}

 cdRef: ChangeDetectorRef

ngDoCheck() is a callback
where you can implement
you own custom change
detection.

Change detection logic on every component

A View gets refreshed when..
To sum it up: Default change detection always triggers a refresh, OnPush only when
an event was triggered within the component or its children, or an input has changed.

Default (aka CheckAlways)

 Always

OnPush

 Inputs changed

 Was manually set to dirty in ngDoCheck

 Was set to dirty in the “Set dirty” phase

 ️ Be aware that inputs are compared shallow

